Prostaglandin E2 regulates amyloid precursor protein expression via the EP2 receptor in cultured rat microglia.

نویسندگان

  • Amy M Pooler
  • Anibal A Arjona
  • Robert K Lee
  • Richard J Wurtman
چکیده

We investigated the effects of prostaglandin E2 (PGE2) on amyloid precursor protein (APP) expression in cultured rat microglia. PGE2 treatment significantly increased the expression of APP holoprotein and was associated with an elevation in cyclic AMP (cAMP). Direct activation of adenylate cyclase with forskolin also increased APP expression. Co-treatment of microglia with PGE2 and the PKA inhibitor H-89 suppressed the overexpression of APP caused by PGE2 alone. The prostaglandin EP2 receptor is known to be positively coupled to cAMP production. Stimulation of the EP2 receptor with butaprost increased APP holoprotein, whereas co-incubation of the cells with PGE(2) and the EP2 receptor antagonist AH-6809 blocked the effect of PGE2 on APP expression. These data suggest that PGE2 is able to regulate the expression of APP, and that this effect may be mediated by the EP2 receptor and the cAMP signaling cascade.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microarray analysis of the in vivo response of microglia to Aβ peptides in mice with conditional deletion of the prostaglandin EP2 receptor

Amyloid-β (Aβ) peptides accumulate in the brains of patients with Alzheimer's disease (AD), where they generate a persistent inflammatory response from microglia, the innate immune cells of the brain. The immune modulatory cyclooxygenase/prostaglandin E2 (COX/PGE2) pathway has been implicated in preclinical AD development, both in human epidemiology studies1 and in transgenic rodent models of A...

متن کامل

EP2 Receptor Signaling Regulates Microglia Death.

The timely resolution of inflammation prevents continued tissue damage after an initial insult. In the brain, the death of activated microglia by apoptosis has been proposed as one mechanism to resolve brain inflammation. How microglial death is regulated after activation is still unclear. We reported that exposure to lipopolysaccharide (LPS) and interleukin (IL)-13 together initially activates...

متن کامل

Cyclooxygenases and prostaglandin E2 receptors in growth plate chondrocytes in vitro and in situ – prostaglandin E2 dependent proliferation of growth plate chondrocytes

Prostaglandin E2 (PGE2) plays an important role in bone development and metabolism. To interfere therapeutically in the PGE2 pathway, however, knowledge about the involved enzymes (cyclooxygenases) and receptors (PGE2 receptors) is essential. We therefore examined the production of PGE2 in cultured growth plate chondrocytes in vitro and the effects of exogenously added PGE2 on cell proliferatio...

متن کامل

Small molecule antagonist reveals seizure-induced mediation of neuronal injury by prostaglandin E2 receptor subtype EP2.

With interest waning in the use of cyclooxygenase-2 (COX-2) inhibitors for inflammatory disease, prostaglandin receptors provide alternative targets for the treatment of COX-2-mediated pathological conditions in both the periphery and the central nervous system. Activation of prostaglandin E2 receptor (PGE(2)) subtype EP2 promotes inflammation and is just beginning to be explored as a therapeut...

متن کامل

Effect of PGE2-EPs pathway on primary cultured rat neuron injury caused by aluminum

To observe the characteristic changes of PGE2-EPs pathway and divergent functions of PGE2 receptor subtypes on neuronal injury. The primary cultured rat hippocampus neuron injury model was established via aluminum maltolate (100 μM). The aluminum-overload neurons were treated with the agonists of EP1 (17-phenyl trinor Prostaglandin E2 ethyl amide), EP2 (Butaprost), EP3 (Sulprostone) and EP4 (CA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience letters

دوره 362 2  شماره 

صفحات  -

تاریخ انتشار 2004